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Abstract
This work presents a simple way of estimating uniaxial tensile strength on the basis of
theoretical shear strength calculations, taking into account its dependence on a superimposed
normal stress. The presented procedure enables us to avoid complicated and time-consuming
analyses of elastic stability of crystals under tensile loading. The atomistic simulations of
coupled shear and tensile deformations in cubic crystals are performed using first principles
computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals
are subjected to shear deformations in convenient slip systems and a special relaxation
procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the
normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking
these results into account, the uniaxial tensile strength values in three crystallographic
directions were evaluated by assuming a collapse of the weakest shear system. Calculated
strengths for 〈001〉 and 〈111〉 loading were found to be mostly lower than previously calculated
stresses related to tensile instability but rather close to those obtained by means of the shear
instability analysis. On the other hand, the strengths for 〈110〉 loading almost match the stresses
related to tensile instability.

1. Introduction

Uniaxial tensile tests on whiskers are some of the easiest
experimental strength measurements. Results of such
experiments usually yield values orders of magnitude lower
than theoretical predictions. The first attempts to calculate the
theoretical tensile strength assumed that the crystal separates
along planes perpendicular to the loading axis [1–3]. Even
in many later studies based on either semiempirical [4] or
first principles [5–7] atomistic approaches, the tensile strength
was calculated as the stress related to tensile instability σit

(calculated usually from the inflection point of the energy–
strain dependence). Later on, Born’s criteria for stability of
solid crystals [8] were modified to predict the first onset of
instability in a crystal lattice subjected to external loading [9].
However, such an approach is computationally very time-
consuming. For this reason, only a few studies of crystal
stability under applied stress have been performed [4, 10, 11]
and most of them were dedicated to uniaxial loading of cubic

crystals in the 〈001〉 direction. Those theoretical studies based
on atomistic modelling, as well as experiments on whiskers [3],
suggested that rupture of many perfect crystals is related to
reaching the shear strength in some convenient shear system
rather than approaching the maximum tensile stress. An
illustration of such a shear system is shown in figure 1.

When the crystal is subjected to tensile stress σ , certain
slip systems can be exposed to a combination of shear and
tensile (normal to the shear plane) stresses. The displayed
vectors �n and �d determine the vertical to the shear plane and the
shear direction, respectively. The angles φ and λ in figure 1 are
measured between the vectors and the crystal axis. The normal
stress σn can be expressed by means of the tensile stress σ and
the angle φ as

σn = σ cos2 φ. (1)

Assuming that some shear instability can precede the onset of
tensile instability, the tensile strength σmax can be estimated
from the corresponding theoretical shear strength τmax using
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Figure 1. Illustration of a shear system in a crystal sample under
tensile stress. φ and λ are angles between the crystal axis and normal
vector �n and shear direction �d , respectively.

the relation
σmax = τmax

cos φ cos λ
, (2)

where σmax represents a tensile stress value at which the shear
stress in a convenient shear system reaches its maximum
(τmax). The relation is similar to the well known Schmid’s law

τc = σy cos φ cos λ, (3)

that expresses the relation between the critical resolved shear
stress τc required to move dislocations across the slip plane
and the yield stress σy in crystals with defects. However, the
equation (2) holds only for a perfect single crystal. Another
significant difference lies in the influence of the normal stress
on the shear strength. Whilst, in Schmid’s law, τc is considered
to be, at least in fcc crystals, independent of the normal stress,
a significant influence of tensile (as well as compressive) σn

on the shear strength has been reported recently for fcc and
bcc metals [12–14] as well as for diamond ceramics [15]. In
this paper, the influence of normal stress is studied particularly
in the region of tensile stresses and the obtained results are
used for a simple estimate of the theoretical tensile strength
σmax. The σmax values are calculated under the assumption
that the fcc crystal subjected to 〈001〉, 〈110〉 and 〈111〉 tensile
loading can fail by the 〈112̄〉{111} shear instability when the
shear stress in this system exceeds the related shear strength
τmax. This can happen before reaching the stress σit, related
to the tensile instability. However, the τmax values commonly
available in the literature are computed under the assumption
of a simple shear, i.e. without considering the influence of the
normal stress σn that was included in our analysis.

2. Computational procedure

Six fcc crystals (Al, Ni, Cu, Ir, Pt and Au) were subjected
to homogeneous shear deformations in the 〈112̄〉{111} slip
system in two distinct ways. In the first approach (from
now on called the rigid-planes approach) we keep the shear
planes undistorted during the whole shear process. Only the
inter-planar distance is allowed to change in order to set the
normal stress to a prescribed value. This approach is consistent
with previous calculations of Kelly et al [3] as well as with
our recent study [12]. However, the present work utilizes a
calculated stress tensor, whereas the study in [12] was based on
calculations of the total energy. The other approach (relaxed-
planes) lies in a full relaxation of the stress tensor (including
possible in-plane stresses) and the computational procedure is

A

Figure 2. Two adjacent (111) A (open circles) and B (solid circles)
planes in fcc crystals for illustration of the 〈112̄〉{111} shear system.

the same as described in [13]. In both approaches, the main
attention was paid to the tensile region of normal stresses. The
homogeneous shear was simulated by shearing a simulation
cell containing a single atom (primitive fcc cell) under periodic
boundary conditions.

The studied shear system is illustrated in figure 2. For the
sake of clarity, only two adjacent planes are displayed. The
[112̄] arrow displays one of the three ‘easy shear’ directions.
The maximum shear stress calculated along this shear path
is considered to be the theoretical shear strength. When
the selected atom in-plane A reaches the position marked
by the left dashed circle, the corresponding structure has fcc
symmetry of an opposite stacking order (with respect to the
original state). On the other hand, if the upper plane A moves
straight to the right ([1̄1̄2] direction) its atoms must overcome
a high energy barrier related to passing tightly above atoms
in the B plane. The related shear stresses are very high and,
therefore, the crystal prefers to undergo a combined shear
deformation composed of the ‘easy shears’ (dotted arrows in
figure 2). The arrows indicate that atoms of the plane A can go
around those of plane B. If the acting force deviates slightly
from the [1̄1̄2] direction, however, the shear should continue
the way that results in shuffling, e.g. in the prevalent [01̄1]
direction. According to figures 1 and 2, projections of the
assumed tensile forces acting along [110] and [111̄] directions
exert shear stress in the [112̄](111) system (that corresponds
to the vector �d in figure 1). The opposite shear [1̄1̄2] will be
induced by an application of the tensile force along the [001]
direction. Thus, σmax for [001] loading can be calculated by
assuming the vector �d to be equivalent to, for example, the
[12̄1] direction in figure 2.

For calculations of the Hellman–Feynman stress tensor,
we utilized the Vienna ab initio simulation package
(VASP) [16]. This code uses a plane wave basis set and ultra-
soft pseudo-potentials of Vanderbilt type [17]. In the case
of Ni, the projector augmented-wave potential [18] was used
instead along with the spin-polarized calculations (to take the
ferromagnetic ordering in Ni into account). The exchange–
correlation energy was evaluated using either the local density
approximation (LDA) (Pt, Au) or the generalized-gradient
approximation (GGA) (Al, Ni, Cu, Ir). The 18 × 18 × 18 k-
points mesh was used in all our calculations with the exception
of Al, where a finer mesh 31 × 31 × 31 was used to reproduce
available experimental data (particularly the shear modulus)
with an error smaller than 10% (this criterion was used for all
elements). The solution was considered to be self-consistent
when the energy difference of two consequent iterations was
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Figure 3. Theoretical shear strength τmax as a function of normal
stress σn in the rigid-planes approach. Dashed lines represent linear
regressions of the displayed data points.

smaller than 10 μeV and the stresses were converged by
the relaxation procedure (consistent with that in [13]) to the
required values with errors smaller than 0.2 GPa.

3. Results and discussions

The computed τmax(σn) functions (from the rigid-planes
approach) are displayed in figure 3 for the region of tensile
normal stresses up to 20 GPa. In order to fit conveniently all the
data points into one diagram, the τmax values for Ir are divided
by 3. As can be seen from the regression lines, the functions
are almost linearly decreasing and can be expressed as

τmax = τr − sσn, (4)

where s expresses the slope of the regression lines and τr

can be considered to be the theoretical shear strength τis in
the absence of normal stress [12]. The regression parameters
are collected in table 1. Comparing the computed data with
previous results [12] one can see a good agreement in the τr

values while more remarkable differences can be found in the
s values. They are caused not only by different assessment
but also by the different selected range of interpolated data
(with respect to the normal stresses). The most remarkable
disagreement in τr can be found for Pt (11%) and Au (19%).
All other values match the previous results within 5%. It
should be noted, however, that a significant deviation from the
linear trend was found formerly in the range of higher tensile
stresses in the case of Ir [12].

The results of relaxed-planes calculations are qualitatively
consistent with those of the rigid-planes approach. Again,
within the limited range of normal stresses, the τmax(σn)

functions were approximated by linear functions and their
regression parameters were also added to table 1. Comparing
both approaches, one can see that the full relaxation of stresses
remarkably lowers the shear strength of Au, Cu and Pt. The
relaxed τr values can be compared with available literature data
for the theoretical shear strength τis [19]. As can be seen, the
regression parameters τr are mostly somewhat higher than τis

(calculated directly for σn = 0).

Table 1. Regression parameters for [112̄](111) shear strength in
both the rigid-planes and the relaxed-planes approaches.

Rigid-planes Relaxed-planes

Element τr (GPa) s τr (GPa) s τis (GPa)

Al 3.12 0.238 3.07 0.319 2.84a

Ni 5.64 0.139 5.05 0.123 5.05a

Cu 3.01 0.117 2.43 0.080 2.16a

Ir 17.1 0.223 17.3 0.249
Pt 2.75 0.138 2.05 0.177
Au 1.66 0.152 1.05 0.171 0.85a

a Reference [19].

In order to estimate the theoretical tensile strength σmax,
the relations (1), (2) and (4) can be combined (assuming the
substitution σ = σmax in the equation (1)) to the final form

σmax = τr

cos φ(cos λ + s cos φ)
. (5)

The obtained σmax values (from both approaches) for uniaxial
tension in [001], [110] and [111̄] directions are listed in tables 2
and 3. The uniaxial tension was applied to the crystal in the
most favourable representation (with respect to (111) plane)
from the family of symmetry-equivalent directions 〈001〉,
〈110〉 and 〈111〉. The σit values, which were collected from
available literature, represent corresponding values of the stress
at the limit of tensile stability. It can be seen that the predicted
σmax values for [001] and [111̄] directions (obtained from both
approaches) are substantially lower than the corresponding σit

for all studied fcc crystals with the exception of Ir. On the
other hand, the computed σit in the [110] direction are so low
that the predicted σmax values are of comparable magnitude.
In the case of the [001] direction (table 3), the computed σmax

values can also be compared with stresses σinst corresponding
to the first onset of elastic instability (C22 = C23) as predicted
by Milstein and Chantasiriwan [4]. It is obvious that values
of σmax for both Cu and Ni are in good agreement with σinst

values. Reliability of the tensile strength estimate for Cu is
also confirmed by our previous ab initio stability analysis [20]
where the σinst value was specified to be 9.4 GPa. In the case
of Au, the Milstein’s and Chantasiriwan’s σinst significantly
overestimates our σmax values. Nevertheless, it should be
noted that also their σit value is higher than the ab initio result
of 18.6 GPa [7]. Indeed, recent calculations of Zhang et al
[21], based on the semiempirical method (modified analytical
embedded atom method), predicted instability at a tensile stress
of 6.3 GPa in better correspondence with our σmax values
(particularly with the rigid-planes approach). The reported
σinst in table 3 for Al is just slightly lower than σit. An even
smaller difference (σinst = 12.1 GPa, σit = 12.5 GPa) was
calculated by Li and Wang [10]. The phonon instability at
a stress of 9.2 GPa predicted by Clatterbuck et al [11] is
close to our σmax for Al, although this instability is related to
inhomogeneous distortion of the crystal that cannot be captured
by the presented procedure. The shear instability predicted
in the present study (that corresponds to the long wavelength
limit of phonon stability analysis) should fall in between this
value and the peak in the stress–strain curve of 12.9 GPa.
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Table 2. The estimated theoretical tensile strengths σmax in [110] and [111̄] directions along with the available literature data for σit.

[110] loading [111̄] loading

Element σ rigid
max (GPa) σ relaxed

max (GPa) σit (GPa) σ rigid
max (GPa) σ relaxed

max (GPa) σit (GPa)

Al 5.0 4.5 4.2a 9.2 8.8 14.8a

Ni 10.0 9.1 11.7a 17.1 15.4 39.3a

Cu 5.5 4.6 5.5a 9.2 7.5 26.5a

Ir 27.6 27.1 26.5b 50.4 50.6 43.5b

Pt 4.9 3.5 3.5b 8.3 6.1 30.0b

Au 2.9 1.8 2.8a 5.0 3.2 13.6b

a Reference [4].
b Unpublished results.

Table 3. The estimated theoretical tensile strengths σmax in the [001]
direction along with the available literature data for σit and the stress
σinst corresponding to the first onset of elastic instability.

Element σ rigid
max (GPa) σ relaxed

max (GPa) σinst (GPa) σit (GPa)

Al 9.9 9.0 11.1a 12.6a

Ni 20.0 18.3 21.3a 39.0a, 35.2b

Cu 11.0 9.3 9.8a 23.7a, 24.1b

Ir 55.2 54.3 44.5b

Pt 9.8 7.0 34.1b

Au 5.8 3.6 10.0a 22.5a, 18.6b

a Reference [4].
b Reference [7].

However, one should take into account that the data in [11]
were calculated using a different approximation of exchange–
correlation energy (LDA). This approximation usually yields
slightly higher stress values than that used in the present study
(GGA).

To evaluate the impact of the normal stress, results of
equation (5) for s = 0 are listed in table 4. In this
case, σmax could be calculated simply as τr divided by the
Schmid factor cos φ cos λ. The corresponding values σs=0 are
higher than σmax in all cases. The correction by the normal
stress reduces the predicted tensile strength in the case of
〈111〉 tension mostly by 5–10% whereas a more remarkable
reduction (mostly by 20–40%) can be found for 〈001〉 and
〈110〉 tensile loading.

4. Summary

The theoretical tensile strength of a perfect crystal was
estimated from the theoretical shear strength and its
dependence on the normal stress in particular shear systems.
The basic idea, followed in this paper, is that the fcc
crystal under 〈001〉, 〈110〉 and 〈111〉 tensile loading can fail
by the 〈112̄〉{111} shear instability when the shear stress
in this system exceeds the related ideal (theoretical) shear
strength. The theoretical shear strength was calculated from
first principles as a linearly decreasing function of tensile
normal stress for all studied fcc crystals. The estimated tensile
strength values in 〈001〉 and 〈111〉 directions were found to be
lower than the stresses corresponding to tensile instability in
most of the studied elements (except in Ir). On the other hand,
the tensile strengths in the 〈110〉 direction are comparable

Table 4. The estimated tensile strength σs=0 without the correction
by the normal stress (in GPa).

σs=0: rigid-planes σs=0: relaxed-planes

Element [001] [110] [111̄] [001] [110] [111̄]
Al 13.2 6.6 9.9 13.0 6.5 9.8
Ni 23.9 12.0 18.0 21.4 10.7 16.1
Cu 12.8 6.4 9.6 10.3 5.2 7.7
Ir 72.6 36.3 54.4 73.4 36.7 55.1
Pt 11.7 5.8 8.8 8.7 4.4 6.5
Au 7.0 3.5 5.3 4.5 2.2 3.3

to the corresponding stresses at the tensile stability limit.
Considering the influence of normal stress on the shear strength
reduces the tensile strength by 5–10% in the case of 〈111〉
tension and by 20–40% for 〈001〉 and 〈110〉 tensile directions.
A good agreement of our calculations with the results of elastic
stability analyses found in the literature proves our approach
to be a simple but useful tool for predictions of ideal tensile
strength even for other crystal structures.
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